

Breast Cancer

Detection Using
Machine Learning

Taratong Dolinsky
Woroma Dimkpa
Kahlel Cardona

Faculty Advisor: Dr. Zahra Nematzadeh

Table of Contents

Goals
Functionality

Motivation
Algorithms & Tools

Milestones

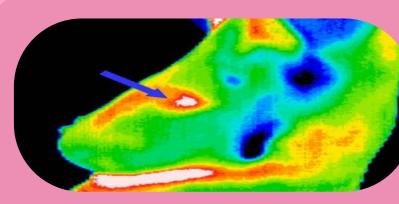
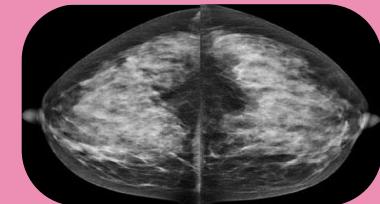
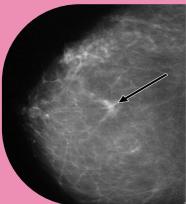
Approach/Key features

Technical Challenges

Goals

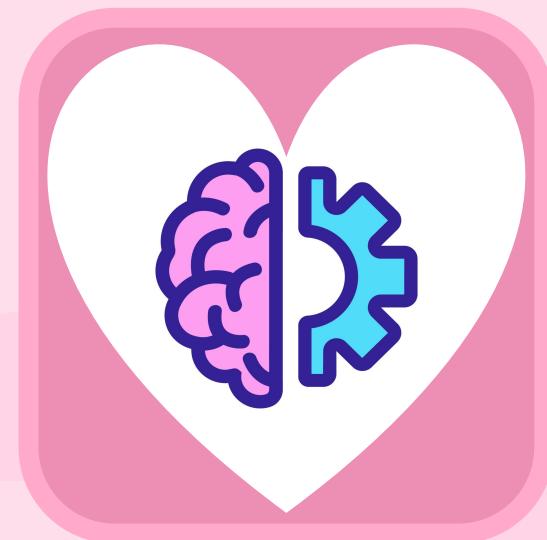
- ❖ Train a machine learning model (i.e CNN with transfer learning) on the CBIS-DDSM dataset
- ❖ Evaluate model performance using:
 - Accuracy
 - Precision
 - Recall
 - F1-score
 - auc
- ❖ Compare different model architectures and hyperparameters
- ❖ Document results, analyze findings, and discuss limitations

Motivation




- ❖ **Breast cancer is one of the most prevalent cancers worldwide and a leading cause of cancer-related deaths among women.**
- ❖ **Early detection can significantly improve survival rates**
- ❖ **Current technology includes some limitations such as**
 - ❖ **reliance on handcrafted features**
 - ❖ **limited generalization across datasets**
 - ❖ **sensitivity to image noise and variability**

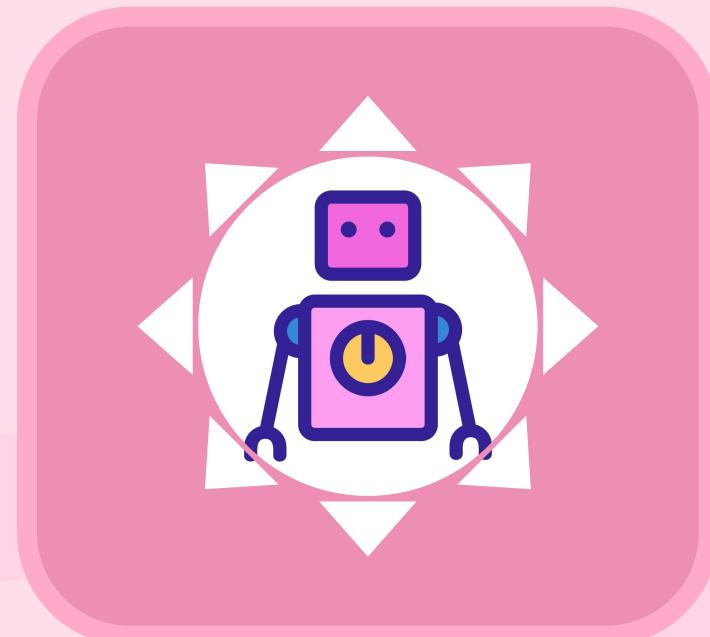
Approach (Key Features)

Feature 1: Preprocessing Pipeline


- ❖ Input raw CBIS-DDSM images
 - ❖ Automatic:
 - Resizing
 - Normalization
 - Augmentation
- ❖ Consistent, reproducible preprocessing

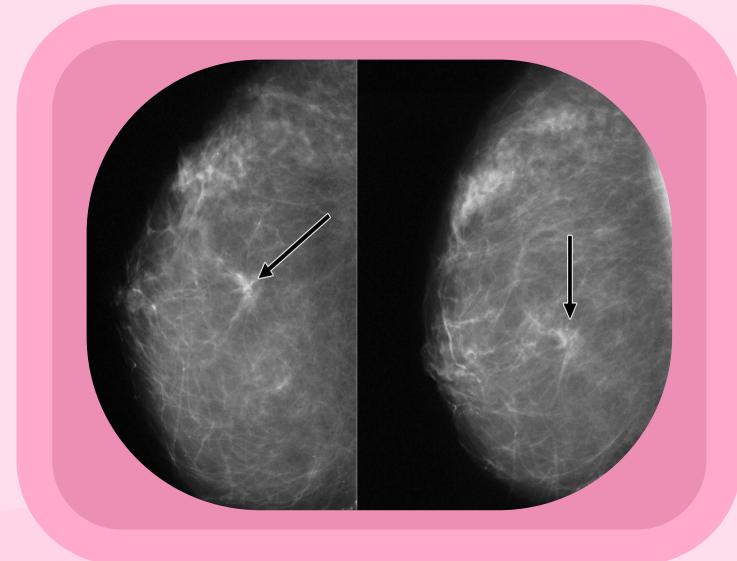
Approach (Key Features) Cont.

Feature 2: CNN-Based Classification


- ❖ CNN Models (e.g. ResNet, EfficientNet)
- ❖ Transfer Learning
- ❖ Output:
 - Benign / Malignant label
 - Confidence score

Approach (Key Features) Cont.

Feature 3: Evaluation & Visualization


- ❖ Metrics:
 - Accuracy
 - Precision
 - Recall
 - F1-score
 - AUC
- ❖ Visualizations:
 - Confusion Matrix
 - ROC Curve

Functionality

- ❖ Upload mammogram images
- ❖ Train & evaluate models
- ❖ Compare architectures
- ❖ View metrics and visual results
- ❖ Inspect misclassified cases

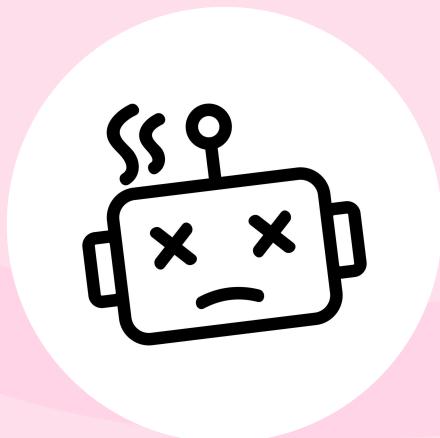
Algorithms & Tools

❖ Algorithms

- Convolutional Neural Networks
- Transfer Learning
- Binary Classification

❖ Tools

- Python
- PyTorch or TensorFlow
- Scikit-learn
- Matplotlib


❖ Dataset

- CBIS-DDSM mammogram image dataset

Technical Challenges

- ❖ Limited Experience with Medical Image Data
- ❖ CNN Training & Tuning
- ❖ Model Evaluation & Interpretation

Milestone 1 (Planning & Setup)

- ❖ **Compare and select technical tools**
- ❖ **Develop small demos**
- ❖ **Resolve initial technical challenges**
- ❖ **Create Necessary documents**

Milestone 2 (Core Implementation)

- ❖ **Implement and test full preprocessing pipeline**
- ❖ **Implement and train an initial CNN model**
- ❖ **Implement transfer learning using a pre trained architecture**
- ❖ **Evaluate and compare initial mode**

Milestone 3 (Refinement & Analysis)

- ❖ **Implement additional CNN architectures**
- ❖ **Fine-tune parameters and augmentation strategies**
- ❖ **Perform detailed evaluation using visuals**
- ❖ **Create a diagram which showcases each milestone and its results**

Task Matrix

Task	Kahlel	Woroma	Tara
Compare & Select Technical Tools	Data	Models	Visualization
“Hello World” Demos	Preprocessing	CNN Training	Metrics
Resolve Technical Challenges	Dataset	Architecture	Evaluation
Requirements Document	50%	25%	25%
Design Document	25%	25%	50%
Test Plan	25%	50%	25%

Thank you

Questions?